

Product Manual Cat. No: #4200

# **HiDi® Taq 2x PCR Master Mix**

### **Description**

HiDi® Taq 2x PCR Master Mix is a ready to use reaction mix, containing the HiDi® (High Discrimination) Taq DNA polymerase and an optimized buffer including ultrapure dNTPs. It contains all the components necessary for a successful and reliable PCR or primer extension reaction in all standard PCR cyclers. Only primers and template need to be added.

HiDi® Taq DNA polymerase is a highly selective DNA polymerase variant, specially evolved for all assays in which High Discrimination is required, for instance in allele-specific PCRs, primer extensions or methylation-specific PCRs.

HiDi® Taq DNA polymerase efficiently amplifies from primers that are matched at the 3'-end and discriminates primers that are mismatched. An aptamer-based hot-start formulation of the HiDi® Taq DNA polymerase prevents false amplification. Temperatures above 50–55°C cause the aptamer's secondary structure to melt and will set-free the polymerase.

HiDi® Taq variant has a 5'-3'-nuclease activity and therefore can be used for hydrolysis probe-based real-time PCRs.

Applications include SNP-detection by allele-specific amplification (ASA)/allele-specific PCR, genotyping and genomic profiling, real-time PCR with fluorescence-based hydrolysis probes and real-time multiplex detection PCR.

#### Kit components

| Component                      | S pack*     | M pack*     |
|--------------------------------|-------------|-------------|
| HiDi® Taq 2x PCR<br>Master Mix | 1 x 1.25 mL | 5 x 1.25 mL |

<sup>\*</sup>Other pack sizes, bulk orders and customization are available upon request.

#### Storage and shipment

Transport with cool packs. The reagents should be stored at -20°C upon arrival. The reagents are stable until the expiration date if stored correctly.

VAT no. DE294545185

#### **Reaction Master Mix set-up**

The recommended master mix set-up for a 25  $\mu$ L reaction volume is shown in the table below.

| Reagent                        | Volume (µL)              | Final concentration   |
|--------------------------------|--------------------------|-----------------------|
| HiDi® Taq 2x<br>PCR Master Mix | 12.5                     | 1x                    |
| ∞Forward primer<br>(10 µM)     | 0.5                      | 0.2 μM<br>(0.05–1 μM) |
| ∞Reverse primer<br>(10 µM)     | 0.5                      | 0.2 μM<br>(0.05–1 μM) |
| Template/Sample extract        | x                        | <1000 ng* DNA         |
| Nuclease-free water            | Up to 25 μL final volume |                       |

Keep all components on ice.

Spin down and mix all solutions carefully before use.

The addition of magnesium (+ 0.5–1.5 mM) might be needed in case of longer amplicons (>500 bp).

∞Primers should ideally have a GC content of 40–60% typically.

\*Suggested template concentration should be about 10 ng – 1000 ng (genomic DNA) or 1 pg – 1 ng (plasmid/viral DNA) per reaction

#### Instrument and program set-up

| Cycles | Steps                   | Temperature | Time              |
|--------|-------------------------|-------------|-------------------|
| 1      | Initial<br>denaturation | 95°C        | 2 min             |
| 25–40  | Denaturation            | 95°C        | 15 sec            |
|        | Annealing*              | 54-72°C     | 30 sec            |
|        | Extension               | 72°C        | 30 sec<br>/250 bp |

<sup>\*</sup>Typically, the annealing temperature is about 3–5°C below the calculated melting temperature of the primers used.



Product Manual Cat. No: #4200

## **Technical information and support**

Please note, for real-time PCRs using a real-time dye such as SYBR Green, HiDi® 2x PCR Master Mix (#9101) is recommended over the HiDi® Taq DNA polymerase.

For technical enquiries or assay development support, please contact us via e-mail at: mdx@medixbiochemica.com.

Additional information and technical resources are available on our website at: <a href="mailto:info.medixbiochemica.com/resources">info.medixbiochemica.com/resources</a>.